Фазификация функциями Гаусса

 
в палитре на схеме

Блок реализует процедуру фазификации входной переменной на несколько термов с помощью функций принадлежности типа гривой Гаусса. Предназначен для использования при создании систем управления на базе нечеткой логики.

По значению входа и заданным параметрам происходит расчет вектора значений функций принадлежности. Функции рассчитываются по формуле кривой Гаусса:

где:

Yi – значение функции принадлежности i-го терма в выходном векторе;

X – значение входной величины;

Ci, sigmai – параметры функций, задаваемые Пользователем.

Примерный вид кривой Гаусса (см. Рисунок 1)

Рисунок 1. Вид кривой Гаусса

Рисунок 2. Фазовый портрет

Для первой и последней функции принадлежности, возможно два варианта задания вида функции (определяется свойством S функции на границах):
  1. S функция - расчет происходит с контролем выхода величины за границу диапазона. Для вектора из n термов, если входная величина меньше минимума, то Y0 = 1, если входная величина больше максимума, то Yn = 1 (см. Рисунок 3).

    Рисунок 3. Гауссовские граничные функции принадлежности

  2. Обычная функция Гаусса. При выходеза границу диапазона значение функции принадлежности уменьшается (см. Рисунок 4)

    Рисунок 4. S-образные граничные функции принадлежности

Порты

Свойства блока

Параметры блока

Примечание:
В случае если у общих свойствах блока свойство Анимированый (Animated) установлено в значениеДа, то над блоком во время моделирования отображается значения вектора выходных величин в виде «графического эквалайзера», где величины функций принадлежности пропорциональны высоте столбцов (см. Рисунок 5).

Рисунок 5. Динамическое отображение результата фазификации